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ABSTRACT: Complete 3D models of existing masonry structures can be obtained assembling 2-nodes macro-
elements, representing the non-linear behavior of masonry panels and piers. This modeling strategy has been
implemented in the TREMURI program with non-linear static and dynamic analysis procedures requiring
limited computational loads. By means of internal variables, the macro-element considers both the shear-diding
damage failure mode and its evolution, controlling the strength deterioration and the stiffness degradation, and
rocking mechanisms, with toe crushing effect. Masonry building models can be obtained assembling plane

structures, walls and floors.

1 INTRODUCTION

The need for masonry structure modeling and
analysis tools is largely diffused worldwide. Very
sophisticated finite element models or extremely
smplified methods are commonly used for the
seismic anaysis of this kind of structures. In this
paper, by means of the effective macro-element
approach, an accurate, but without heavy
computational load, modeling strategy is presented
and developed for the analysis of both building and
bridge structures.

Case studies and examples, both from experimental
testing and earthquake damaged structures, show the
modeling technique effectiveness and the seismic
analysis capabilities. Pushover anayses provide
capacity curves and equivalent hysteretic damping
evauation: these results permit to assess the
applicability of the Capacity Spectrum Method to
masonry  structures,  checking the  seismic
performance prediction by dynamic analyses.

2 STRUCTURAL MODEL
2.1 Non-linear macro-element model

The non-linear macro-element model, representative
of a whole masonry panel, proposed by Gambarotta
and Lagomarsino (1996), permits, with a limited
number of degrees of freedom (8), to represent the
two main in-plane masonry failure modes, bending-
rocking and shear-diding (with friction) mechanisms,
on the basis of mechanical assumptions. This model
considers, by means of interna variables, the shear-
diding damage evolution, which controls the strength

deterioration stiffness
degradation.

Figure 1 shows the three sub-structures in which a
macro element is divided: two layers, inferior © and
superior @, in which the bending and axial effects are
concentrated. Finaly, the central pat @ suffers
shear-deformations and presents no evidence of axial
or bending deformations. A complete 2D kinematic
model should to take into account the three degrees
of freedom for each node “i” and “j” on the
extremities: axial displacement w, horizontal
displacement u and rotation j . There are two
degrees of freedom for the central zone axia
displacement d and rotation f (Figure 1).
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Figure 1. Kinematic model for the macro-element

Thus, the kinematics is described by an eight
degree freedom vector, @ = {u; w; j i U w; j; df},
which is obtained for each macro-element. It is
assumed that the extremities have an infinitesmal
thickness (D® 0).

The overturning mechanism, which happens
because the material does not show tensile strength,



is modeled by a mono-lateral elastic contact between
® and @ interfaces. The congtitutive equations
between the kinematic variablesw, j and the
correspondent  static  quantities d m are
uncoupled until the limit COﬂdI'[IOhL £ —, for which
the partiaization effect begins t e\ﬁelop in the
section.

For sub-structure @ the following equations are
obtained:

N =kA(d - w)+ N (1)
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where A =s>b corresponds to the transversal area of
the panel. The inelastic contributionN"jand M, are
obtained from the mono-lateral condition of perfect
elastic contact:
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where H(-)isthe Heaviside function.
The panel shear response is expressed considering
a uniform shear deformation  distribution

g :huj+f in the central part @ and imposing a

relationship between the kinematic quantities u;, U,
andf , and the shear stressT,=-T,. The cracking

damage is usually located on the diagonal, where the
displacement take place along the joints and is
represented by an inelastic deformation component,
which is activated when the Coulomb’s limit friction
condition is reached. From the effective shear
deformation corresponding to module @ and
indicating the elastic shear module as G, the
constitutive equations can be expressed as.
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where the inelastic component T, includes the
friction stress f effect, opposed to the diding
mechanism, and involves a damage parameter a and
a non-dimensiona coefficient c, that controls the
inelastic deformation. In this model, the friction plays
the role of an interna variable, defined by the
following limit condition:

FS:\f\-mei£o, (7

where r corresponds to the friction coefficient.
These constitutive equations can represent the panel

resistance variation due to changes on axia stresses
N; =- N; . The damage effects upon panel mechanical
characteristics are described by the damage variable
a that grows according to a pre-defined failure
criteria:

Fq=Y(S)- R@)EO, ®
where Y = }/ cg®is the damage energy release rate; R
is the resigtance function and S={t n m}' isthe
internal  stress vector. Assuming R as a growing
function of ato the critica vaue a.=1and
decreasing for higher values, the model can represent
the stiffness degradation, the strength degradation
and pinching effect.

The complete constitutive model, for the macro
element, can be expressed in the following form:

Q:Ka+Q*1 ©
where Q=T N M TN M N M
contains the non-linear terms evaluated by the

evolution equations, related to the damage variable
a and the frictionf , and K is the eastic stiffness

matrix.

The non-linear terms N° and M are defined
through the following equation:

N =Nj- N;M =-M;-M; +T;h. (10)

The macro-element shear model is a macroscopic
representation of a continuous model (Gambarotta a
& Lagomarsino 1997), in which the parameters are
directly correlated to the mechanical properties of the
masonry elements. The macro-element parameters
should be considered as representative of an average
behaviour. In addition to its geometrical
characteristics, the macro-element is defined by six
parameters: the shear module G, the axia stiffness K,
the shear strength f,, of the masonry, the non-
dimensional coefficient ¢ that controls the inelastic
deformation, the global friction coefficient f and the
b factor, that controls the softening phase.

2.2 Toe crushing and compressive damage model

The macro-element used in the program to assemble
the wall model keeps also into account the effect
(especidly in bending-rocking mechanisms) of the
limited compressive strength of masonry (Penna
2002). Toe crushing effect is modelled by means of
phenomenological nortlinear congtitutive law with
stiffness deterioration in compression: the effect of
this modellization on the cyclic vertical displacement-
rotation interaction is represented in Figure 2.
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Figure 2. (a) Cyclic vertical displacement-rotation interaction

with (line) and w/o toe crushing (dots) (Penna, 2002); (b)
Rocking panel with and without crushing.

2.3 3D MASONRY BUILDING MODEL

The 3-dimensiona modelling of whole URM
buildings starts from some hypotheses on their
structural and seismic behaviour: the bearing
structure, both referring to vertical and horizontal
loads, is identified, inside the construction, with walls
and floors (or vaults); the walls are the bearing
elements, while the floors, apart from sharing vertical
loads to the walls, are considered as planar stiffening
elements (orthotropic  3-4 nodes membrane
elements), on which the horizontal actions
distribution between the walls depends; the local
flexural behaviour of the floors and the walls out-of-
plane response are not computed because they are
considered negligible with respect to the global
building response, which is governed by ther in-
plane behaviour (a globa seismic response is possible
only if vertical and horizontal elements are properly
connected).

A frame-type representation of the in-plane
behaviour of masonry walls is adopted: each wall of
the building is subdivided into piers and lintels (2
nodes macro-elements) connected by rigid areas
(nodes) (see Figure 4). Earthquake damage
observation shows, in fact, that only rarely (very
irregular geometry or very small openings) cracks
appear in these areas of the wall: because of this, the

deformation of these regions is assumed to be
negligible, relatively to the macro-element non-linear
deformations governing the seismic response. The
presence of stringcourses (beam elements), tie-rods
(non-compressive spar elements), previous damage,
heterogeneous masonry  portions, gaps and
irregularities can be easly included in the structural
model.

Figure 3. Macro-element modelling of masonry walls.

The non-linear macro-element moddl,
representative of a whole masonry panel, is adopted
for the 2-nodes elements representing piers and
lintels. Rigid end offsets are used to transfer static
and kinematic variables between eement ends and
nodes.

A global Cartesian coordinate system (X,Y,Z) is
defined and the wall vertical planes are identified by
the coordinates of one point and the angle formed
with X axis. In thisway, the walls can be modelled as
planar frames in the local coordinate system and
internal nodes can till be 2-dimensiona nodes with 3
d.of..

The 3D nodes connecting different walls in
corners and intersections need to have 5 d.o.f. in the
global coordinate system (ux, Uy, Uz, roty, roty): the
rotational degree of freedom around vertical Z axis
can be neglected because of the membrane behaviour
adopted for walls and floors. These nodes can be
obtained assembling 2D rigid nodes acting in each
wall plane (see Figure 4) and projecting the local
degrees of freedom aong global axes.
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Figure 4. Scheme of 3D and 2D nodes and out-of-plane mass
sharing.
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The floor elements, modelled as orthotropic
membrane finite elements, with 3 or 4 nodes, are



identified by a principal direction, with Young
modulus E;, while E, is the Young modulus along
the perpendicular direction, n is the Poisson ratio and
Gy the shear modulus: E; and E; represent the wall
connection degree due to the floors, by means a so of
stringcourses and tie-rods. G;, represents the in-
plane floor shear stiffness which governs the
horizontal actions repartition between different walls.

Having the 2D nodes no degrees of freedom along
the orthogonal direction to the wall plane, in the
calculation the nodal mass component related to out-
of-plane degrees of freedom is shared to the
corresponding dofs of the nearest 3D nodes of the
same wall and floor according to the following
relations:

M} =M} +m(l- |cosa|)|_—X
I (11)

M| =M +m(- |sina|)"|—X

where the meaning of the termsis shown in Figure 4.
This solution then permits the implementation of
static analyses with 3 components of acceleration
along the 3 principa directions and 3D dynamic
analyses with 3 ssimultaneous input components, too.

3 SEISMIC ANALY SIS PROCEDURES

In order to perform non-linear seismic analyses of
masonry buildings a set of anaysis procedures has
been implemented (Galasco et al., 2002): incremental
static (Newton-Raphson) with force or displacement
control, 3D pushover analysis with fixed load pattern
and 3D time-history dynamic anaysis (Newmark
integration method; Rayleigh viscous damping),
considering uniform or spatially varying motion. The
pushover procedure, with an effective agorithm,
transforms the problem of pushing a structure
maintaining constant ratios between the applied
forces into an equivaent incremental static analysis
with one d.o.f. displacement response control.

3.1 Pushover analysis

The genera formulation of the pushover problem
can be represented by equations:
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where m is the control degree of freedom and f¢ is
the applied load pattern coefficient vector.

The system of equations can be transformed
subtracting the m-th row from the first m-1, the i-th
equation then becomes:
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The new system of eguations, with a modified
stiffness matrix,
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is then equivalent to a displacement control one, in
which the m-th d.o.f. (X.) is the imposed one. This
formulation can be easily rewritten by introducing the
non-linear contribution and in incremental form, in
order to be implemented in the non-linear procedure.

4 EXPERIMENTAL TEST AND EARTHQUAKE
DAMAGE SIMULATION

4.1 University of Pavia quasi-static tests

In order to demonstrate the reliability of the
model, a numerical simulation of experimental testing
on a full-scale masonry building accomplished in the
Laboratory of the University of Pavia (Magenes &
Calvi, 1997) is here presented.

(b)
Figure 5. (8) Scheme of the test; (b) 3-dimensional view of the
macro-element model.

As shown in Figure 5-a, the experimental tests
have been carried out on two separated structural
systems: the isolated “door” wall and the “window”
wall connected to the two transverse walls. The
numerical smulation has then performed by cyclic
analysis of two different macro-element models
(Figure 6) with the same mechanical characteristics:
the window wall system has been modelled using 12
nodes and 21 macro-elements, the door wall 9 nodes
and 10 macro-elements.

(b)



Figure 6. (a) 3D model of window and transverse walls; (b) 2D
model of door wall.

The numerical and experimental results are in
good accordance, both in terms of cyclic base shear-
second floor displacement curves (Figures 7,8) and
damage localization at the different load steps. The
model can well represent the real collapse mechanism
and reproduce correct levels of strength and
hysteretic energy dissipation.
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Figure 7. Comparison of experimental (top) and numerical
results (window wall).
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Figure 8. Comparison of experimental (top) and numerical
results (door wall).

4.2 Earthquake damage

A complete 3D macro-element model (Figure 9) of
the Hall of Castelnuovo Belbo village, in Piedmont,
Northern Italy, has been used in order to ssmulate the
building seismic response and the damage pattern
surveyed after August 21% 2000 Monferrato
earthquake (M¢=4.6).

Figure 9. Aerial view of the building and perspective view of
TREMURI 3D model.

By means of a nortlinear time-history analysis, the
global seismic response has been investigated: an
artificial  accelerogram scaled to the maximum
recorded PGA during the seismic event (0.14 g) has
been used asinput.
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Figure 10. Dynamic force-displacement response and damage
pattern in awall.

Figure 11. Damage pattern simulation: surveyed (top) and
simulated damage at the ground floor.

5 CASE STUDY: A TYPICAL BUILDING OF
THE EIXAMPLE DISTRICT IN BARCELONA

A gignificant application of the proposed modeling
strategy has been performed by Bonett et al. (2003)
on a typical building in Barcelona, Spain within the
RISK-UE Project: Figure 12 shows a three-
dimensional view and in plant of the model used for
the prototype building representative of the very
particular structural typology of the Eixample
district. The model is defined by 8 walls in the x

direction (walls M1 to M8) and 6 walls in the y
direction (walls M9 to M14). Each wall has been
modeled as an assemblage of piers, lintels and frame
elements (in some cases) connected to the nodes of
the model by means of rigid joints. The dabs have
been modeled as an orthotropic finite eements
diaphragm, defined by 3 or 4 nodes connected to the
three-dimensional nodes of each level. A man
direction is identified, which is characterizes by a
Y oung’s modulus E; and the direction perpendicular
to this one is characterized by a Y oung’s modulus E.
Figure 15 shows the macro element model
corresponding to walls 1 and 2.
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Figure 12. Three-dimensional model of the analyzed typical
building of the Eixample.
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Figure 13. Macro element model for walls 1 and 2.

In order to analyze the constructive system of the
URM buildings of the Eixample, it is necessary to
have a good knowledge on the materials used in
building their main elements. The bricks are the basic
material of these buildings, being used widdy in
walls, stairs and dlabs. The typical dimensions of the
used bricks are of 30 cm ©~ 15 cm and with
thicknesses varying between 3 cm and 11 cm and
were until the beginning of the XXth century. Later,
mechanical systems were used, what improved
considerably their compactness. Lime mortar was
used in the constructive process of the buildings of
the Eixample. The wide use of this materid is
associated to constructive tradition, to consumption
habits and, apparently, to its strength which was
considering adequate at that period.

In this work, probability distribution functions,
pdf, are used to define the most important
parameters of the mode. These functions are
characterized by a mean value and a covariance. The



definition of the mean value of each parameter has
been defined using the opinion of experts, who
provided sufficient information for defining a model.
Nevertheless, due to the subjective character of this

information, the man parameters have been
consdered as random variables with their
uncertainties. The most important mechanical

properties of the materials used in the analysis of the
building of the Eixample are described below.

Masonry

Y oung’s modulus of thewall E = 2.10* 10° N/n??
Shear modulus G = 0.7 * 10° N/m?

Shear strength t = 1.0 * 10° N/n?

Softening factor for the piersb, = 0.5

Softening factor for the lintels by = 0.05

Cast iron columns

Y oung’s modulus Es = 2.10 10™ N/n??

Specific weight g, = 7850 kg/m®

Concrete columns

Y oung's modulus Ey, = 2.8 10° N/m?

Specific weight g, = 2500 kg/m’

Slabs

Y oung’s modulus (main direction) E; = 4.20 10° N/n?
Y oung’s modulus (orthogonal direction) E, = 4.20 10" N/n?
Shear modulus G = 0.4 * 10° N/m?

Among all these characteristics, those shown in
Table 1 have been defined as random variables
because they have an important influence on the
structural response of this one type of buildings. The
normal probability distribution function has been
used for the three variables, where the mean value of
each parameter corresponds to the values proposed
by experts. The covariance has been defined in such a
way to cover the range of the possible values of each
parameter.

Table 1. Probability distribution functions, median values and
covariance of the random variables.

Parameter PDF Mean Covariance
Y oung’s modulus E normal  2.110° Pa 0.3
Shear strength t normal  1.010° Pa 0.3

Softening factor by normal 0.5 0.3

5.1 Capacity curve

The capacity curve is obtained applying a force
distribution pattern corresponding to the bending
modal shape oriented along the y axis.

This curve describes the relationship between base
shear and the roof displacement of an equivaent
single degree of freedom model. The response of the
model of the typicd URM building is defined by
means of the capacity curves obtained by means of
the Monte Carlo smulation technique. Thus, 100
samples for each variable were generated and a
structural model was defined for each sample group.
One hundred capacity curves were thus obtained.

The advanced computational tool STAC (2002) has
been used in the simulation process. Figure 14 shows
to the capacity spectra corresponding to the mean
value and to the corresponding standard deviations.
This type of the representation shows the sensitivity
of these analysis methods to the uncertainties in the
structural parameters.
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Figure 14. Median, median + 1s, median — 1s capacity
spectra.

5.2 Damage states

In order to obtain the damage states limits or the
performance levels of the URM building of the
Eixample, there are neither laboratory tests nor
avallable values calibrated from the observed
damages during earthquakes. Additionally, the values
of the mechanical properties of the materials used in
this structural typology are not completely known.
Taking into account all these aspects, the thresholds
of the spectral displacement for the discrete damage
states are defined based on the bilinear smplification
of the capacity spectrum.

A possible definition the thresholds of the spectra
displacement for four damage states is shown in table
2.

Table 2. Displacement limit states

Damage state Spectral displacement threshold
Slight 0.7D,

Moderate Dy

Extensive D;, +0.25D; - D}
Complete D;

* D, and D, arerespectively the equivalent yielding and
ultimate displacement of the bilinear capacity spectrum

5.3 Seismic performance assessment

In order to evaluate the seismic performance of the
typica masonry building of the Eixample, the N2
method proposed by Fajfar (1999) was adopted.

The seismic input, described by acceleration
displacement response spectra, was spatially varied
along the district and the expected damage states
were mostly between dight and moderate
(operationa and life-safe).



6 CONCLUSIONS

As shown in the paper, the non-linear macro-element
modelling of 3-dimensiona masonry buildings
supplies reliable results in  comparison with
experimental data and permits to model effectively
different typologies of real masonry structures, too.
Its seismic analysis capabilities make the TREMURI
program a valid tool both for research activity and
engineering practice, especialy regarding the safety
assessment of existing masonry buildings. The
macro-element model permits to perform reliable
non-linear seismic analyses of wide masonry
structures with a limited number of d.o.f. and
relatively short analysis time using common PC
technology. Modern performance-based seismic
engineering requires this kind of easy-to-use tools for
both capacity assessment and direct time-history
response evaluation.

The assessed seismic performances of a masonry
building, typical for the Eixample area of Barcelona,
show high vulnerability and possible damage due to
relatively small earthquakes.
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