
1 INTRODUCTION 
The need for masonry structure modeling and 
analysis tools is largely diffused worldwide. Very 
sophisticated finite element models or extremely 
simplified methods are commonly used for the 
seismic analysis of this kind of structures. In this 
paper, by means of the effective macro-element 
approach, an accurate, but without heavy 
computational load, modeling strategy is presented 
and developed for the analysis of both building and 
bridge structures.  
Case studies and examples, both from experimental 
testing and earthquake damaged structures, show the 
modeling technique effectiveness and the seismic 
analysis capabilities. Pushover analyses provide 
capacity curves and equivalent hysteretic damping 
evaluation: these results permit to assess the 
applicability of the Capacity Spectrum Method to 
masonry structures, checking the seismic 
performance prediction by dynamic analyses. 

2 STRUCTURAL MODEL 

2.1 Non-linear macro-element model 

The non-linear macro-element model, representative 
of a whole masonry panel, proposed by Gambarotta 
and Lagomarsino (1996), permits, with a limited 
number of degrees of freedom (8), to represent the 
two main in-plane masonry failure modes, bending-
rocking and shear-sliding (with friction) mechanisms, 
on the basis of mechanical assumptions. This model 
considers, by means of internal variables, the shear-
sliding damage evolution, which controls the strength 

deterioration (softening) and the stiffness 
degradation.  
Figure 1 shows the three sub-structures in which a 
macro element is divided: two layers, inferior 1 and 
superior 3, in which the bending and axial effects are 
concentrated. Finally, the central part 2 suffers 
shear-deformations and presents no evidence of axial 
or bending deformations. A complete 2D kinematic 
model should to take into account the three degrees 
of freedom for each node “i” and “j” on the 
extremities: axial displacement w , horizontal 
displacement u  and rotation ϕ .  There are two 
degrees of freedom for the central zone: axial 
displacement δ  and rotation φ  (Figure 1). 
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Figure 1. Kinematic model for the macro-element 

 
Thus, the kinematics is described by an eight 

degree freedom vector, aT = {ui wi ϕi uj wj ϕj δ φ}, 
which is obtained for each macro-element. It is 
assumed that the extremities have an infinitesimal 
thickness (∆→0). 

The overturning mechanism, which happens 
because the material does not show tensile strength, 

Seismic assessment of masonry structures by non-linear macro-element 
analysis 

A. Penna 
European Centre for Training and Research in Earthquake Engineering, Pavia, Italy 

S. Cattari, A. Galasco & S. Lagomarsino 
Department of Structural and Geotechnical Engineering, University of Genoa, Italy 

 
 

 
 

 
ABSTRACT: Complete 3D models of existing masonry structures can be obtained assembling 2-nodes macro-
elements, representing the non-linear behavior of masonry panels and piers. This modeling strategy has been 
implemented in the TREMURI program with non-linear static and dynamic analysis procedures requiring 
limited computational loads. By means of internal variables, the macro-element considers both the shear-sliding 
damage failure mode and its evolution, controlling the strength deterioration and the stiffness degradation, and 
rocking mechanisms, with toe crushing effect. Masonry building models can be obtained assembling plane 
structures, walls and floors. 



is modeled by a mono-lateral elastic contact between 
1 and 3 interfaces. The constitutive equations 
between the kinematic variables w , ϕ  and the 
correspondent static quantities n and m are 
uncoupled until the limit condition
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the partialization effect begins to develop in the 
section.  

For sub-structure 1 the following equations are 
obtained: 
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where bsA ⋅=  corresponds to the transversal area of 
the panel. The inelastic contribution iN* and *

iM  are 
obtained from the mono-lateral condition of perfect 
elastic contact: 
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where ( )•H is the Heaviside function. 
The panel shear response is expressed considering 

a uniform shear deformation distribution 
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uu ji  in the central part 2 and imposing a 

relationship between the kinematic quantities iu , ju  
andφ , and the shear stress ji TT −= . The cracking 
damage is usually located on the diagonal, where the 
displacement take place along the joints and is 
represented by an inelastic deformation component, 
which is activated when the Coulomb’s limit friction 
condition is reached. From the effective shear 
deformation corresponding to module 2 and 
indicating the elastic shear module as G, the 
constitutive equations can be expressed as: 
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where the inelastic component *
iT includes the 

friction stress f  effect, opposed to the sliding 
mechanism, and involves a damage parameter α and 
a non-dimensional coefficient c , that controls the 
inelastic deformation. In this model, the friction plays 
the role of an internal variable, defined by the 
following limit condition: 

0≤⋅−=Φ iS Nf µ , (7) 

where µ  corresponds to the friction coefficient. 
These constitutive equations can represent the panel 

resistance variation due to changes on axial stresses 
ij NN −= . The damage effects upon panel mechanical 

characteristics are described by the damage variable 
α , that grows according to a pre-defined failure 
criteria: 

( ) ( ) ,0≤−=Φ αRSYd  (8) 

where 2
2

1 cqY = is the damage energy release rate; R 
is the resistance function and { }TS t n m=  is the 
internal stress vector. Assuming R as a growing 
function of α to the critical value 1=Cα and 
decreasing for higher values, the model can represent 
the stiffness degradation, the strength degradation 
and pinching effect. 

The complete constitutive model, for the macro 
element, can be expressed in the following form:  

*QKaQ += , (9) 

where { }         
********* MNMNTMNTQ jjjiii=  

contains the non-linear terms evaluated by the 
evolution equations, related to the damage variable 
α and the friction f , and K is the elastic stiffness 
matrix. 

The non-linear terms *N  and *M are defined 
through the following equation: 

hTMMMNNN iijij
******* ; +−−=−= . (10) 

The macro-element shear model is a macroscopic 
representation of a continuous model (Gambarotta a 
& Lagomarsino 1997), in which the parameters are 
directly correlated to the mechanical properties of the 
masonry elements. The macro-element parameters 
should be considered as representative of an average 
behaviour. In addition to its geometrical 
characteristics, the macro-element is defined by six 
parameters: the shear module G, the axial stiffness K, 
the shear strength 
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of the masonry, the non-
dimensional coefficient c  that controls the inelastic 
deformation, the global friction coefficient f  and the 
β  factor, that controls the softening phase. 

2.2 Toe crushing and compressive damage model 

The macro-element used in the program to assemble 
the wall model keeps also into account the effect 
(especially in bending-rocking mechanisms) of the 
limited compressive strength of masonry (Penna 
2002). Toe crushing effect is modelled by means of 
phenomenological non-linear constitutive law with 
stiffness deterioration in compression: the effect of 
this modellization on the cyclic vertical displacement-
rotation interaction is represented in Figure 2. 



(a)            

ϕ 

w 

 

(b) 

-80

-60

-40

-20

0

20

40

60

80

-25 -20 -15 -10 -5 0 5 10 15 20 25

Top displacement [mm]

Ba
se

 s
he

ar
 [

kN
]

 
Figure 2. (a) Cyclic vertical displacement-rotation interaction 
with (line) and w/o toe crushing (dots) (Penna, 2002); (b) 
Rocking panel with and without crushing. 

2.3 3D MASONRY BUILDING MODEL 

The 3-dimensional modelling of whole URM 
buildings starts from some hypotheses on their 
structural and seismic behaviour: the bearing 
structure, both referring to vertical and horizontal 
loads, is identified, inside the construction, with walls 
and floors (or vaults); the walls are the bearing 
elements, while the floors, apart from sharing vertical 
loads to the walls, are considered as planar stiffening 
elements (orthotropic 3-4 nodes membrane 
elements), on which the horizontal actions 
distribution between the walls depends; the local 
flexural behaviour of the floors and the walls out-of-
plane response are not computed because they are 
considered negligible with respect to the global 
building response, which is governed by their in-
plane behaviour (a global seismic response is possible 
only if vertical and horizontal elements are properly 
connected). 

A frame-type representation of the in-plane 
behaviour of masonry walls is adopted: each wall of 
the building is subdivided into piers and lintels (2 
nodes macro-elements) connected by rigid areas 
(nodes) (see Figure 4). Earthquake damage 
observation shows, in fact, that only rarely (very 
irregular geometry or very small openings) cracks 
appear in these areas of the wall: because of this, the 

deformation of these regions is assumed to be 
negligible, relatively to the macro-element non-linear 
deformations governing the seismic response. The 
presence of stringcourses (beam elements), tie-rods 
(non-compressive spar elements), previous damage, 
heterogeneous masonry portions, gaps and 
irregularities can be easily included in the structural 
model. 
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Figure 3. Macro-element modelling of masonry walls. 

 
The non-linear macro-element model, 

representative of a whole masonry panel, is adopted 
for the 2-nodes elements representing piers and 
lintels. Rigid end offsets are used to transfer static 
and kinematic variables between element ends and 
nodes.  

A global Cartesian coordinate system (X,Y,Z) is 
defined and the wall vertical planes are identified by 
the coordinates of one point and the angle formed 
with X axis. In this way, the walls can be modelled as 
planar frames in the local coordinate system and 
internal nodes can still be 2-dimensional nodes with 3 
d.o.f.. 

The 3D nodes connecting different walls in 
corners and intersections need to have 5 d.o.f. in the 
global coordinate system (uX, uY, uZ, rotX, rotY): the 
rotational degree of freedom around vertical Z axis 
can be neglected because of the membrane behaviour 
adopted for walls and floors. These nodes can be 
obtained assembling 2D rigid nodes acting in each 
wall plane (see Figure 4) and projecting the local 
degrees of freedom along global axes. 
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Figure 4. Scheme of 3D and 2D nodes and out-of-plane mass 
sharing. 

 
The floor elements, modelled as orthotropic 

membrane finite elements, with 3 or 4 nodes, are 



identified by a principal direction, with Young 
modulus E1, while E2 is the Young modulus along 
the perpendicular direction, ν is the Poisson ratio and 
G1,2  the shear modulus: E1 and E2 represent the wall 
connection degree due to the floors, by means also of 
stringcourses and tie-rods. G1,2 represents the in-
plane floor shear stiffness which governs the 
horizontal actions repartition between different walls. 

Having the 2D nodes no degrees of freedom along 
the orthogonal direction to the wall plane, in the 
calculation the nodal mass component related to out-
of-plane degrees of freedom is shared to the 
corresponding dofs of the nearest 3D nodes of the 
same wall and floor according to the following 
relations:  
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where the meaning of the terms is shown in Figure 4. 
This solution then permits the implementation of 

static analyses with 3 components of acceleration 
along the 3 principal directions and 3D dynamic 
analyses with 3 simultaneous input components, too.  

3 SEISMIC ANALYSIS PROCEDURES 

In order to perform non-linear seismic analyses of 
masonry buildings a set of analysis procedures has 
been implemented (Galasco et al., 2002): incremental 
static (Newton-Raphson) with force or displacement 
control, 3D pushover analysis with fixed load pattern 
and 3D time-history dynamic analysis (Newmark 
integration method; Rayleigh viscous damping), 
considering uniform or spatially varying motion. The 
pushover procedure, with an effective algorithm, 
transforms the problem of pushing a structure 
maintaining constant ratios between the applied 
forces into an equivalent incremental static analysis 
with one d.o.f. displacement response control. 

3.1 Pushover analysis 

The general formulation of the pushover problem 
can be represented by equations: 
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where m is the control degree of freedom and fF is 
the applied load pattern coefficient vector. 

The system of equations can be transformed 
subtracting the m-th row from the first m-1, the i-th 
equation then becomes: 
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The new system of equations, with a modified 
stiffness matrix, 
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is then equivalent to a displacement control one, in 
which the m-th d.o.f. (xm) is the imposed one. This 
formulation can be easily rewritten by introducing the 
non-linear contribution and in incremental form, in 
order to be implemented in the non-linear procedure. 

4 EXPERIMENTAL TEST AND EARTHQUAKE 
DAMAGE SIMULATION 

4.1 University of Pavia quasi-static tests 

In order to demonstrate the reliability of the 
model, a numerical simulation of experimental testing 
on a full-scale masonry building accomplished in the 
Laboratory of the University of Pavia (Magenes & 
Calvi, 1997) is here presented. 

 

(a) (b) 
Figure 5. (a) Scheme of the test; (b) 3-dimensional view of the 
macro-element model. 

 
As shown in Figure 5-a, the experimental tests 

have been carried out on two separated structural 
systems: the isolated “door” wall and the “window” 
wall connected to the two transverse walls. The 
numerical simulation has then performed by cyclic 
analysis of two different macro-element models 
(Figure 6) with the same mechanical characteristics: 
the window wall system has been modelled using 12 
nodes and 21 macro-elements, the door wall 9 nodes 
and 10 macro-elements. 
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(b) 



Figure 6. (a) 3D model of window and transverse walls; (b) 2D 
model of door wall. 

 
The numerical and experimental results are in 

good accordance, both in terms of cyclic base shear-
second floor displacement curves (Figures 7,8) and 
damage localization at the different load steps. The 
model can well represent the real collapse mechanism 
and reproduce correct levels of strength and 
hysteretic energy dissipation. 
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Figure 7. Comparison of experimental (top) and numerical 
results (window wall). 
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Figure 8. Comparison of experimental (top) and numerical 
results (door wall). 

4.2 Earthquake damage 

A complete 3D macro-element model  (Figure 9) of 
the Hall of Castelnuovo Belbo village, in Piedmont, 
Northern Italy, has been used in order to simulate the 
building seismic response and the damage pattern 
surveyed after August 21st 2000 Monferrato 
earthquake (Md=4.6). 

 

 

 
Figure 9. Aerial view of the building and perspective view of 
TREMURI 3D model. 

 
By means of a non-linear time-history analysis, the 

global seismic response has been investigated: an 
artificial accelerogram scaled to the maximum 
recorded PGA during the seismic event (0.14 g) has 
been used as input. 
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Figure 10. Dynamic force-displacement response and damage 
pattern in a wall. 

 

 

 
Figure 11. Damage pattern simulation: surveyed (top) and 
simulated damage at the ground floor. 

5 CASE STUDY: A TYPICAL BUILDING OF 
THE EIXAMPLE DISTRICT IN BARCELONA 

A significant application of the proposed modeling 
strategy has been performed by Bonett et al. (2003) 
on a typical building in Barcelona, Spain within the 
RISK-UE Project: Figure 12 shows a three-
dimensional view and in plant of the model used for 
the prototype building representative of  the very 
particular structural typology of the Eixample 
district. The model is defined by 8 walls in the x 

direction (walls M1 to M8) and 6 walls in the y 
direction (walls M9 to M14). Each wall has been 
modeled as an assemblage of piers, lintels and frame 
elements (in some cases) connected to the nodes of 
the model by means of rigid joints. The slabs have 
been modeled as an orthotropic finite elements 
diaphragm, defined by 3 or 4 nodes connected to the 
three-dimensional nodes of each level. A main 
direction is identified, which is characterizes by a 
Young´s modulus E1 and the direction perpendicular 
to this one is characterized by a Young´s modulus E2. 
Figure 15 shows the macro element model 
corresponding to walls 1 and 2. 
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Figure 12. Three-dimensional model of the analyzed typical 
building of the Eixample. 
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Figure 13. Macro element model for walls 1 and 2. 
 

In order to analyze the constructive system of the 
URM buildings of the Eixample, it is necessary to 
have a good knowledge on the materials used in 
building their main elements. The bricks are the basic 
material of these buildings, being used widely in 
walls, stairs and slabs. The typical dimensions of the 
used bricks are of 30 cm × 15 cm and with 
thicknesses varying between 3 cm and 11 cm and 
were until the beginning of the XXth century. Later, 
mechanical systems were used, what improved 
considerably their compactness. Lime mortar was 
used in the constructive process of the buildings of 
the Eixample. The wide use of this material is 
associated to constructive tradition, to consumption 
habits and, apparently, to its strength which was 
considering adequate at that period. 

In this work, probability distribution functions, 
pdf, are used to define the most important 
parameters of the model. These functions are 
characterized by a mean value and a covariance. The 
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definition of the mean value of each parameter has 
been defined using the opinion of experts, who 
provided sufficient information for defining a model. 
Nevertheless, due to the subjective character of this 
information, the main parameters have been 
considered as random variables with their 
uncertainties. The most important mechanical 
properties of the materials used in the analysis of the 
building of the Eixample are described below. 
 
Masonry 
Young´s modulus of the wall E = 2.10 * 109 N/m2 
Shear modulus G = 0.7 * 109 N/m2 
Shear strength τ = 1.0 * 105 N/m2 

Softening factor for the piers βp = 0.5 
Softening factor for the lintels βd = 0.05 
Cast iron columns 
Young´s modulus Es = 2.10 1011 N/m2 
Specific weight γs = 7850 kg/m3 

Concrete columns 
Young´s modulus Eh = 2.8 109 N/m2 
Specific weight γh = 2500 kg/m3 
Slabs 
Young´s modulus (main direction) E1 = 4.20 109 N/m2 
Young´s modulus (orthogonal direction) E2 = 4.20 107 N/m2 
Shear modulus G = 0.4 * 109 N/m2 

 
Among all these characteristics, those shown in 

Table 1 have been defined as random variables 
because they have an important influence on the 
structural response of this one type of buildings. The 
normal probability distribution function has been 
used for the three variables, where the mean value of 
each parameter corresponds to the values proposed 
by experts. The covariance has been defined in such a 
way to cover the range of the possible values of each 
parameter. 

 
Table 1. Probability distribution functions, median values and 
covariance of the random variables. ______________________________________________ 
Parameter     PDF   Mean   Covariance                      ______________________________________________ 
Young’s modulus E  normal  2.1 109 Pa   0.3 
Shear strength τ   normal  1.0 105 Pa   0.3 
Softening factor βp   normal  0.5     0.3 ______________________________________________ 

5.1 Capacity curve 

The capacity curve is obtained applying a force 
distribution pattern corresponding to the bending 
modal shape oriented along the y axis.  

This curve describes the relationship between base 
shear and the roof displacement of an equivalent 
single degree of freedom model. The response of the 
model of the typical URM building is defined by 
means of the capacity curves obtained by means of 
the Monte Carlo simulation technique. Thus, 100 
samples for each variable were generated and a 
structural model was defined for each sample group. 
One hundred capacity curves were thus obtained. 

The advanced computational tool STAC (2002) has 
been used in the simulation process. Figure 14 shows 
to the capacity spectra corresponding to the mean 
value and to the corresponding standard deviations. 
This type of the representation shows the sensitivity 
of these analysis methods to the uncertainties in the 
structural parameters. 
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Figure 14. Median, median + 1σ, median – 1σ capacity 
spectra. 

5.2 Damage states 

In order to obtain the damage states limits or the 
performance levels of the URM building of the 
Eixample, there are neither laboratory tests nor 
available values calibrated from the observed 
damages during earthquakes. Additionally, the values 
of the mechanical properties of the materials used in 
this structural typology are not completely known. 
Taking into account all these aspects, the thresholds 
of the spectral displacement for the discrete damage 
states are defined based on the bilinear simplification 
of the capacity spectrum.  
A possible definition the thresholds of the spectral 
displacement for four damage states is shown in table 
2. 
 
Table 2. Displacement limit states ______________________________________________ 
Damage state     Spectral displacement threshold   ______________________________________________ 
Slight            *7.0 yD  

Moderate          *
yD  

Extensive          ( )*** 25.0 yuy DDD −+  

Complete          
*
uD    _____________________________________________ 

* *
yD  and *

uD  are respectively the equivalent yielding and 
ultimate displacement of the bilinear capacity spectrum 

5.3 Seismic performance assessment 

In order to evaluate the seismic performance of the 
typical masonry building of the Eixample, the N2 
method proposed by Fajfar (1999) was adopted.  
The seismic input, described by acceleration-
displacement response spectra, was spatially varied 
along the district and the expected damage states 
were mostly between slight and moderate 
(operational and life-safe). 



6 CONCLUSIONS 

As shown in the paper, the non-linear macro-element 
modelling of 3-dimensional masonry buildings 
supplies reliable results in comparison with 
experimental data and permits to model effectively 
different typologies of real masonry structures, too. 
Its seismic analysis capabilities make the TREMURI 
program a valid tool both for research activity and 
engineering practice, especially regarding the safety 
assessment of existing masonry buildings. The 
macro-element model permits to perform reliable 
non-linear seismic analyses of wide masonry 
structures with a limited number of d.o.f. and 
relatively short analysis time using common PC 
technology. Modern performance-based seismic 
engineering requires this kind of easy-to-use tools for 
both capacity assessment and direct time-history 
response evaluation. 

The assessed seismic performances of a masonry 
building, typical for the Eixample area of Barcelona, 
show high vulnerability and possible damage due to 
relatively small earthquakes. 
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